CHRISTENSEN, A. N. & OLLIVIER, G. (1972). Solid State Commun. 10, 609–614.

NYBURG, S. C., FAERMAN, C. H. & PRASAD, L. (1987). Acta Cryst. B43, 106-110.

PAULING, L. (1960). *The Nature of the Chemical Bond*, 3rd ed., p. 260. Ithaca: Cornell Univ. Press.

- STEINER, T. & SAENGER, W. (1991). Acta Cryst. B47, 1022-1023.
- SZYTULA, A., MURASIK, A. & BALANDA, M. (1971). Phys. Status Solidi B, 43, 125–128.
- ZIGAN, F. & ROTHBAUER, R. (1967). Neues Jahrb. Mineral. Monatsh. pp. 137-143.

Acta Cryst. (1992). B48, 746

X-ray powder diffraction studies of *n*-alkanes: a re-examination of the unit-cell parameters of C₂₄H₅₀ and C₂₆H₅₄. By A. R. GERSON, Department of Chemistry, King's College, University of London, Strand, London WC2R 2LS, England, and K. J. ROBERTS* and J. N. SHERWOOD, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland

(Received 29 April 1992; accepted 13 May 1992)

Abstract

Further analysis of the synchrotron X-ray powder diffraction patterns for *n*-tetracosane ($C_{24}H_{50}$) and *n*-hexacosane ($C_{26}H_{54}$) has yielded unit cells in addition to those proposed by Gerson, Roberts & Sherwood [*Acta Cryst.* (1991), **B47**, 280–284]. The new unit cells are very similar to those predicted by Nyburg & Potworowski [*Acta Cryst.* (1973), **B29**, 347–352] being triclinic and conforming to the series observed for $C_{18}H_{38}$, $C_{20}H_{42}$ and $C_{22}H_{46}$ [Gerson, Roberts & Sherwood (1991). *Acta Cryst.* **B47**, 280–284].

Discussion

Ab intio indexing (using the program *ITO*, Visser, 1969) of the synchrotron radiation powder diffraction patterns of $C_{24}H_{50}$ and $C_{26}H_{54}$ seemed to indicate bilayer Z = 2pseudomonoclinic unit cells (Gerson, Roberts & Sherwood, 1991). From these unit cells a polytypic form of the triclinic Z = 1 type structure ($C_{18}H_{38}$, Nyburg & Lüth, 1972), was proposed. These unit cells did not agree with those predicted by Nyburg & Potworowski (1973). A single-crystal X-ray diffraction study (Gerson & Nyburg, 1992) has since shown $C_{24}H_{50}$ to be isostructural to the shorter even *n*-alkanes ($C_{20}H_{42}$, Nyburg & Gerson, 1992; $C_{18}H_{38}$, Nyburg & Lüth, 1972) as predicted. This result led us to re-examine our previous analysis of the powder data recorded for $C_{24}H_{50}$ and for $C_{26}H_{54}$.

The unit cells predicted by Nyburg & Potworowski (1973) for $C_{24}H_{50}$ and $C_{26}H_{54}$ were refined, using the program *ITO* (Visser, 1969), against the reflection positions observed (Gerson, Roberts & Sherwood, 1991). The resulting unit cells were then further refined against the indexed reflections using *REFCEL* (Daresbury Laboratory Powder Diffraction Library).

The newly refined Z = 1 unit cells (Table 1) were found to predict the reflection positions at least as well as the

* Also at SERC Daresbury Laboratory, Warrington WA4 4AD, England.

0108-7681/92/050746-01\$06.00

polytypic unit cells previously proposed (Gerson, Roberts & Sherwood, 1991). The proposed Z = 2 pseudomonoclinic unit cells for $C_{24}H_{50}$ and $C_{26}H_{54}$ are most probably the result of incorrect indexing. Both compounds almost certainly have the same triclinic Z = 1 lattice as observed for the shorter even *n*-alkanes ($C_{18}H_{38}$ to $C_{22}H_{46}$, Gerson, Roberts & Sherwood, 1991).

Table 1. Measured and predicted (Nyburg & Potworowski, 1973) unit cells of $C_{24}H_{50}$ and $C_{26}H_{54}$ with e.s.d.'s below in parentheses

(a) Figure of merit.* (b) Number of peak positions used as data in *ITO*.

	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å ³)	z	(a) (b)
C ₂₄ H ₄₀	4.277	4.817	32.544	86.29	68.86	72.74	597	1	47 40
- 24 30	(0.001	0.001	0.005	0.02	0.03	0.03)			
C24H50†	4.285	4.82	32.50	86.43	68.71	72.70	596	1	
C26H54	4.269	4.803	34.883	86.92	69.94	73.10	642	1	45 40
	(0.001	0.001	0.005	0.05	0.05	0.03)			
C ₂₆ H ₅₄ †	4.285	4.82	35.04	86.73	68.92	72.70	644	1	

* See Gerson, Roberts & Sherwood (1991). † Predicted.

The authors gratefully acknowledge financial support from Exxon Chemicals Ltd.

References

- GERSON, A. R. & NYBURG, S. C. (1992). Acta Cryst. B48. 737-741.
- GERSON, A. R., ROBERTS, K. J. & SHERWOOD, J. N. (1991). Acta Cryst. B47, 280-284.
- NYBURG, S. C. & GERSON, A. R. (1992). Acta Cryst. B48, 103-106.
- NYBURG, S. C. & LÜTH, H. (1972). Acta Cryst. B28, 2992-2995.
- NYBURG, S. C. & POTWOROWSKI, J. A. (1973). Acta Cryst. B29, 347-352.

VISSER, J. W. (1969). J. Appl. Cryst. 2, 89-95.

© 1992 International Union of Crystallography